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Parametric sensitivity of methanol oxidation process as solution of
boundary-value problem with an unknown parameter
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Abstract

A new approach to parametric sensitivity studies of a catalytic fixed-bed operation is presented. This approach is based on the sensitivity
functions of technological characteristics with respect to small variations of control parameters under the condition that the pressure drop
over the catalyst bed is fixed. The problem of parametric sensitivity of the methanol oxidation process is formulated as an example serving
to illustrate the computational technique discussed in the paper. The mathematical model can be written as a boundary-value problem for
ordinary differential equations with the linear gas velocity as an unknown parameter. Our approach provides the possibility of estimating
the influence of space-nonuniformities on the technological process characteristics in a real fixed-bed reactor using a relatively simple
one-dimensional model.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The behavior of chemical reactors depends on variations
in the inlet conditions, as well as in other physical and chem-
ical parameters of the system. Operation of a large-scale
catalytic fixed-bed reactor may be complicated by high para-
metric sensitivity with respect to a small change of the pro-
cess parameters. The general idea can be conveyed with an
example of “wrong way behavior”[1]. Attempts to estimate
the regions of steady-state multiplicity or stable operation,
and to determine parametric sensitivity using conventional
technique under the condition of given linear velocity of the
gas flow[2,3] may provide essential errors especially for
high-exothermic processes. Multidimensional mathematical
description accounting for the aerodynamics of the reacting
gas flow inside a particulate bed as well as the distribution of
physical and chemical properties in the system “catalyst—
reactive flow” may hardly be applied for every-day engineer-
ing purpose because the choice of an adequate model for a
nonlinear chemical process and its parameters is rather com-
plicated[2–5]. Therefore, the parametric sensitivity analysis
for processes occurring in the catalytic fixed-bed reactors
still attracts attention of researchers and engineers[5–8].
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The present study concerns a new approach to analyze
a steady-state operation of the catalytic fixed-bed and to
determine its parametric sensitivity with respect to small
variations of the main process parameters (inlet conditions,
catalyst activity, particulate bed structure, etc.)[9–13]. We
consider one-dimensional mathematical model under condi-
tion that pressure drop over the bed is a priori adjusted but
not the gas flow velocity as it used to be done traditionally.
As a result, analyzing the one-dimensional model we would
be able to perform information about the influence of spa-
tially distributed nonuniformities on the process operation
parameters.

Let us consider some separate cylindrical regions dif-
fering for example, by porosity and located in the same
adiabatic bed of a rather large diameter. Since the pressure
is practically uniform over the cross-section both before
and after the catalyst bed, the pressure drop (or hydraulic
resistance) is the same over each region. At the same time,
the local filtering velocities (or gas consumption) in individ-
ual cylindrical regions may be different under real process
conditions depending on the bed structure, temperature,
etc. Therefore, the one-dimensional models which are tra-
ditionally used for description of the processes occurring in
the catalyst beds and based on the heat and mass balances
at the a priori given gas filtering velocity, allow determine
only some averaged process parameters that sometimes
may give inaccurate conclusions about permitted variations
of the control parameters. The assumption of fixed pressure
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drop over the catalyst fixed-bed helps to estimate the pro-
cess parameters, which can be realized in separate cylin-
drical regions with different inlet or inner bed conditions
existed in the same adiabatic bed. Hence, we can observe
the local responds to the perturbation of any control param-
eter. Such conclusions are of course approximate, because
the one-dimensional model does not describe the detailed
aerodynamics in particulate bed even if takes into account
the heat and mass transfer through the outer surface of a
separate cylindrical region in concern. Nevertheless, our
approach focuses on the sources of potential danger for hot
spots to occur in the course of highly exothermic reactions,
and allows us more accurate estimating the maximum value
for the permitted nonuniformities in the catalytic fixed-bed.

Note that earlier studies for the hydrodynamic problems
[14,15], plug flow catalytic reactor[16], and polymerization
reactors[17] had shown that there are parameter regions
in the parameter space where different flow regimes corre-
spond to the same pressure drop in the considered systems
while the liquid phase properties, the viscosity in particular,
are strongly dependent on the reaction mixture temperature
and composition. This phenomenon is known asthermome-
chanicalor thermoflow multiplicity. At the same time, for a
catalytic system “gas–solid” this problem seemed to be of
not high significance, and as a rule the momentum balance
is not considered in mathematical models[9,18].

In this work we demonstrate how the effect of the inlet
conditions or local structure nonuniformities over the bed
cross-section on the temperature distribution at a steady-state
operation can be estimated by means of the one-dimensional
mathematical model consideration. The sensitivity functions
of technological operation characteristics with respect to
different control parameters are constructed and the com-
parative sensitivity analysis of solutions of the model with
fixed pressure drop over the bed and the conventional plug
flow model is carried out. We have considered an adiabatic
fixed-bed and a large-scale unit with four adiabatic catalyst
beds and heat exchangers between them.

2. Mathematical model of processes in catalyst fixed-bed

A quasi-homogeneous plug flow model is used to model
the steady-state processes in a catalyst fixed-bed reactor.
Following [19], we consider the one-dimensional model
of methanol to formaldehyde oxidation in the adiabatic
fixed-bed of oxide-catalyst:

v
dx

dl
= F (x), x(0) = x0, (1)

wherev is the linear gas flow velocity (calculated at normal
conditions), the vectorx = (x1, x2, x3, x4, x5) consists of
the volume concentrations of methanol (x1), formaldehyde
(x2), water (x3) and oxygen (x5) (mol/m3) and the tempera-
ture (x4) (K), x0 = (x10, x20, x30, x40, x50) is the inlet con-
ditions vector,F = (f1, f2, f3, f4, f5), f1 = −W1, f2 =

W1 − W2, f3 = W1 + W2, f4 = Q1W1 + Q2W2 andf5 =
−0.5(W1 + W2); Wj = (1− ε)W3j (j = 1, 2); ε is the bed
porosity,W31, W32 are the reaction rates of methanol and
formaldehyde oxidation stages referred to the catalyst vol-
ume unit [20], Q1 and Q2 are the heats of stages,l is the
axial coordinate along the bed, 0< l < L.

Using balances which are valid for given form of the
source functionF (x)

x3 = x30 + 2(x10 − x1) + x20 − x2,

x4 = x40 + (Q1 + Q2)(x10 − x1) + Q2(x20 − x2),

x5 = x50 − (x10 − x1) − 0.5(x20 − x2),

(2)

we come from the system (1) to a reduced system of only
two equations forx1 andx2.

Now let us consider the pressure drop over the nonisother-
mal granular bed. At a given structure of the particulate bed
the increase dP in the pressure drop over the length dl is de-
termined by the local flow velocitỹv through the bed, gas
densityρ and dynamic viscosityµ. Regarding the accuracy
of practical importance for a wide range of parameters we
may use the Ergun equation[21]:

dP

dl
= α0µṽ + β0ρṽ

2, (3)

whereP(l) denotes the pressure drop over the lengthl (hence
P(0) = 0), the constantsα0 andβ0 depend on the prop-
erties of the packing and the porosityε, in particular. If a
chemical reaction evolving or consuming heat occurs in the
bed thenµ, ρ, andṽ in the contact zone will change along
l according to the temperature distribution. We may neglect
the effect of the gas composition on the thermal and phys-
ical flow properties, assuming that mixture in concern is
low-concentrated that is typical for most catalytic processes.
Let the reaction occur without volume change, and pressure
drop over the bed be much less than the average pressure in
the reactor. Then, according to the continuum equation and
in assumption of the ideal gas, it follows that:

ρ = ρ0
T0

x4
, ṽ = v

x4

T0
. (4)

Moreover,µ = µ0ϕ(x4) whereρ0,µ0, andv are the density,
dynamic viscosity and linear velocity of the gas mixture at
STP (273 K and 0.1 MPa).

Integrating theEq. (3) andusing the ratios (4) we get the
pressure drop over the nonisothermal particulate bed of the
lengthL

�P =
∫ L

0
Aρ

(
v
x4

T0

)2 ( α

Re
+ β

)
dl, (5)

where�P = P(L) − P(0), A is a coefficient determined
by the bed structure and by the catalyst particle size and
shape,Re= Re(v, ε, x4) is the Reynolds number,α andβ

are constants.
Therefore, if we introduce a dimensionless axial coordi-

nateξ = l/L, 0 ≤ ξ ≤ 1, and take into consideration the
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balances (2), the mathematical model for the process in the
catalyst bed can be rewritten in the following form:

dx1

dξ
= L

v
(1 − ε)W31,

dx2

dξ
= L

v
(1 − ε)(W31 − W32),

dP

dξ
= A · L · ρ

(
v
x4

T0

)2 ( α

Re
+ β

)
,

(6)

with the conditions at the inlet

x1(0) = x10, x2(0) = x20, P (0) = 0, (7)

and given pressure drop over the bed

P(1) = �P. (8)

The model (6)–(8) contains the parameterv to be found.
Physically, it means that the local gas velocity is determined
by the local conditions and tunes after the general pressure
drop over the catalyst bed. From the formal point of view,
now the mathematical model is the boundary-value prob-
lem, and moreover contains one unknown parameter. This
is its principal difference from the conventional approach
as the initial-value problem (6) and (7). Note that if the
thermal-physical parametersρ andµ of the mixture do not
change along the bed, then the gas flow velocityṽ also does
not change, and the relationship (5) betweenṽ and�P is
a quadratic equation. Moreover, both models have the same
unique solution under real conditions for the methanol to
formaldehyde oxidation process: regimes are completely de-
termined by the inlet conditionsx0 and by the gas supplyv
for the model (6) and (7) in traditional approach or by the
pressure drop�P for the model (6)–(8).

In order to compare the parametric sensitivity for solu-
tions of two models in a correct way, it is necessary to take
�P-value in the boundary-value problem (6)–(8) as one cor-
responded to the gas flow velocity in the initial-value prob-
lem (6) and (7). That means the identity of the technological
modes in both reactor models considered.

Note, that in case of a more complex reaction scheme
we obtain a similar one-dimensional mathematical model
consisted ofN equations:

dX

dξ
= F(x, v, θ), X = (x1, . . . , xN)T, (9)

where the last equation defines the pressure drop again. For
such system the approach suggested leads also to a similar
boundary conditions withN conditions at the inlet and one
condition at the outlet of the catalyst fixed-bed:

X(0) = X0(θ), (10)

xN(1) = �P(θ). (11)

where,θ denotes a selected parameter of the model, sensi-
tivity analysis with respect to which is of practical interest.

To solve the boundary-value problem (9)–(11) with the
parameterv we used Newton’s method, at each iteration

step of which the arising linearized boundary-value prob-
lem with a parameter was solved numerically by means of
the orthogonal factorization method[22]. That allows the
solution to be found more accurate in regions of high gra-
dients. Some further details of the numerical technique are
presented in theAppendix A.

3. Parametric sensitivity functions

First results on the parametric sensitivity of steady-state
processes in catalytic fixed-bed reactors under condition of
the given pressure drop over the bed were presented in
[10–13]. Now to analyze the sensitivity of the solutionX
andv of the problem (9)–(11) with respect to a certain pa-
rameterθ , we introduce parametric sensitivity functions:

Z = ∂X

∂θ
, u = ∂v

∂θ
.

Differentiation of the problem (9)–(11) with respect toθ
gives the corresponding linear boundary-value problem for
the vector-functionZ and parameteru:

dZ

dξ
= FX(X, v, θ) · Z + Fθ(X, v, θ) + Fv(X, v, θ) · u,(12)

Z(0) = ∂X0

∂θ
, zN(1) = ∂(�P )

∂θ
, (13)

whereX andv represent the solution of the original prob-
lem. We solve this problem numerically using the orthogo-
nal factorization method as well (seeAppendix A).

In order to make a quantitative comparison of the sensi-
tivities of different xi-components with respect to various
parameters we consider some dimensionless values like in
[7]. Thus, we introduce the normalized sensitivity function
of the functionxi with respect to a parameterθ :

S(xi, θ) = ∂xi

∂θ

θ∗

x∗
i

(14)

where x∗
i and θ∗ stand for some basic values of the

xi-function and parameterθ .

4. Results

In Fig. 1the temperature and methanol conversion profiles
along the reactor with four catalyst beds and heat removal
between them are shown. The porosity is 0.45 and gas flow
velocity is v0 = 1.112 m/s in each bed. The beds lengths
were chosen to provide the methanol conversion to be about
25% in each bed. It allows achieving an almost complete
methanol conversion avoiding high temperatures[19,23].

Process robustness is a key operation factor, which is de-
termined first of all by the parametric sensitivity of the oper-
ation mode with respect to the control parameters variations.
Now let us consider the process in the first catalyst bed. The
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Fig. 1. Profiles of temperaturex4 (solid lines) and methanol conversion
x (dash lines) in four adiabatic catalyst beds. The inlet conditions are
x10 = 2.93, x20 = 0, x30 = 1.34 andx50 = 4.014 mol/m3 for the first
bed, the inlet temperature isx40 = 503 K for the first and second beds
and x40 = 513 K for the third and fourth beds.

outlet temperaturexout
4 = x4(1) is the more important pa-

rameter of the state in our case.Fig. 2ashows how the inlet
gas mixture temperature affectsxout

4 at various bed packing.
We see that in the bed with the porosityε = 0.4, at the gas
flow velocity v = v0 and temperaturex40 = 503 K, the out-
let temperature respond tox40 change by 1 K equals 12 K,
and methanol conversion changes by 2.9%. If the packing
is more rough andε = 0.45, then the parametric sensitiv-
ity of xout

4 with respect tox40 is 7–9 K/K at the same other
conditions.

In case we fix the pressure drop over the bed,�P, any
perturbation of inlet conditions will affect the local gas flow
velocity (seeFig. 2b). Since�P(v) is a growing function
while xout

4 (v) is a decreasing function, then the parametric
sensitivity determined at some definite�P0 is higher than
that calculated at constant velocityv0. Certainly, one should
make comparison at the equal values�P0 = �P(v0). In
fact, for v = v0, x0 = (2.93,0,1.34,503,4.014), andε =
0.45 we obtain�P0 = 1.813 kPa. The parametric sensitivity
with respect tox40 perturbation is by 20–25% higher than
that determined by conventional procedure at the given gas
velocity v = v0.

Our model (6)–(8) can be used to study the effect of
nonuniform structure (the local porosity fluctuations) on the
operation mode. Assume that there are cylindrical domains
in the bed whose structures are different. With the cylindri-
cal particles of equal height and diameter (that is valid for
the process in concern) the typical bed porosity is 0.35–0.45
[21]. At smallerε the linear gas flow velocity is lower. So,
we deal with a longer contact time, higher temperature, and
more intensive methanol oxidation going to higher con-
versions, though formaldehyde produced will be partially

Fig. 2. Temperature at the adiabatic catalyst bed outlet (a) and pressure
drop over the bed (b) versus gas flow velocity at various porosities:
ε = 0.45 (solid lines), 0.4 (dash lines). Inlet conditions:x10 = 2.93;
x20 = 0; x30 = 1.34; x50 = 4.014 mol/m3; and x40 = 503 (1), 509 K (2).

oxidized. At largerε, on the contrary, the gas flow velocity
v is higher, and the temperature is lower. Curves shown in
Fig. 3 correspond to the gas flow velocities 1.112 m/s (1),
0.814 m/s (2) and 0.541 m/s (3), respectively. Thus curve 1
reveal small gradients along the bed, temperature does not
exceed 600 K, and the formaldehyde generation rate dom-
inates over its oxidation rate. The temperature profile 2 has
a larger gradient. At last, atε = 0.35 the mixture filtration
through the bed is more slow, and process parameters con-
tinue to grow worse (curve 3): almost complete methanol
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Fig. 3. Temperature and concentration profiles in the adiabatic catalyst
bed atx0=(2.93, 0, 1.34, 503, 4.014),∆P = 1.813 kPa,ε = 0.45 (1),
0.4 (2), 0.35 (3). Dots:x1, dashes:x2, solid line: x4.

conversion occurs atξ = 0.7, and the process selectivity
decreases. If we fix the gas flow velocityv and consider the
model (6) and (7), then at each velocity corresponding to
curves 1–3 inFig. 3 the same fluctuations ofε lead to the
far less changes in temperature and selectivity.

Note that we suppose here that the domains of various
porosities do not interact with each other. Therefore, the
obtained regimes may realize in the central parts of rel-
atively large domains, being each uniform by structure.
However, the mathematical modeling confirms that under
consideration of the regarding radial heat and mass transfer
on the boundaries of these domains, the temperature differ-
ence between them remains quite large though it decreases
[13]. This conclusion is also valid for the model describing
transfer processes at the fixed gas flow velocity.

If we choose the inlet temperaturex40 or methanol con-
centrationx10 as a selected parameterθ , the normalized sen-
sitivity functions of the temperaturex4 with respect to these
parameters do not much distinguish for the model (6)–(8)
(solid lines inFig. 4a and b) and (6) and (7) (dash lines).
In this case, the difference in sensitivity is 5–10%. Note
also that the sensitivity with respect to the inlet temperature
variations decreases from the first to the fourth bed, but the
sensitivity with respect to the inlet methanol concentration
increases in general.

Another situation is observed with the temperature sen-
sitivity with respect to the structure nonuniformities (see
Fig. 5). The sensitivity functions appear to be much big-
ger in magnitude for the model (6)–(8), what is more

Fig. 4. Normalized sensitivity functions of the temperaturex4 with respect
to the inlet temperature (a) and the inlet methanol concentration (b) at
the fixed pressure drop (solid lines) and at the given gas flow velocity
(dash lines) on each catalyst bed. Conditions correspond toFig. 1. The
inlet temperatures and methanol concentrations at each bed were used as
normalizing factors.

compatible with practical surveys. Thus, at the given gas
velocity v0 = 1.112 m/s andε = 0.45, the normalized sen-
sitivity function value equals−0.415 at the first bed outlet,
that corresponds to the outlet temperature sensitivity to the
porosity as−463.5 K. Then the porosityε decrease from
0.45 to 0.4 leads to the outlet temperature increase by 23 K
and allowed bed structure nonuniformity may be as high as
0.15. If we impose condition (8), then at the same change of
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Fig. 5. Normalized sensitivity functions of the temperaturex4 with respect
to the local porosity at fixed pressure drop over each catalyst bed (solid
lines) and at given gas flow velocity (dash lines). The inlet temperatures
at each bed and the porosity value were used as normalizing factors.

ε the outlet temperature increase is by several folds larger.
In this case, for the value�P = 1.813 kPa (the pressure
drop over the catalyst bed atv0 = 1.112 m/s andε = 0.45)
the allowed porosity variations can be not more than 0.04.
That means that the catalyst packing should be more uni-
form than the initial-value problem (6) and (7) estimates.

Fig. 6 shows the sensitivity functions of methanol and
formaldehyde concentrations with respect to small variations
of the porosity (solid lines) and pressure drop (dash lines)
in the first catalyst bed. We can see that the sensitivity to
�P is not high if compared with sensitivity toε.

Note that the sensitivity functions estimate the reactor be-
havior just for the small fluctuations of control parameters
considered, i.e. specify the local sensitivity in the paramet-
ric space. For appreciable parameter variations the reactor
respond can be much different from the predicted by means
of sensitivity functions (seeFig. 7). The tangents to the out-
let temperature versus porosity curves are determined by the
sensitivity functions, and they are close to each other only
in a small region near the point of contact. At 0.05 changes
in porosity, the sensitivity function in the model (6)–(8) can
underestimate the temperature respond for over 100 K.

Experience of catalytic fixed-bed operation shows that
some significant nonuniformities of the outlet temperature,
so called “hot spots”, can appear in the large diameter
adiabatic beds. This phenomenon might be caused by the
nonuniform bed structure, in particular. In this case it is
reasonable to take into account that different regions of the
particulate fixed-bed work at the same pressure drop while
the local gas flow velocities can be different.

Fig. 6. Normalized sensitivity functions of methanol (1) and formaldehyde
(2) concentration in the first bed with respect to the local porosity (solid
lines) and pressure drop (dash lines) forε = 0.4 and�P = 1.813 kPa.
The inlet conditions correspond toFig. 1. The inlet methanol and outlet
formaldehyde concentrations, the pressure drop over the bed and the
porosity values were used as normalizing factors.

Fig. 7. The outlet temperature of the first bed versus the porosity in
boundary-value problem (6)–(8) at�P = 1.813 kPa (solid lines) and
initial-value problem (6) and (7) atv = 1.112 m/s (dash lines). Straight
lines are defined with sensitivity functions atε = 0.45.

5. Conclusion

For efficient and accurate theoretical analysis of the pro-
cesses in catalytic fixed-bed reactors, a new approach has
been described. In the approach the sensitivity functions
technique has been adopted for treatment of possible nonuni-
form temperature spots appearing in real catalyst beds due
to fluctuations of the inlet conditions or bed structure pa-
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rameters.It has been demonstrated that the permitted pa-
rameter variations, so-called practical operation stability of
steady-state regimes, can be more precise determined by a
relatively simple one-dimensional mathematical model un-
der condition that the pressure drop over the bed is given
while the local gas flow velocity is to be found. The approach
has been successfully applied to the sensitivity analysis of
methanol oxidation process on oxide catalyst.

We believe it will be possible to use this technique for
various exothermic processes performed in the catalytic
fixed-bed reactors. The numerical algorithm applied to solve
the boundary-value problem for the system of ordinary dif-
ferential equations with an unknown parameter appears to
be an important tool to determine the parameters region of
the efficient and safe catalytic fixed-bed reactors operation.
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Appendix A

Here we shall describe the numerical technique for solv-
ing the nonlinear boundary-value problem (9)–(11) with the
unknown parameterv in detail. This technique is based on
the construction of a sequence of approximations of a solu-
tion of the problem (9)–(11). We apply the Newton method
and the orthogonal factorization method for solving the lin-
ear boundary-value problems in the course of iterations[22].
Note that the orthogonal factorization method was used also
for solving the linear boundary-value problem (12) and (13)
with the parameteru for sensitivity functions.

When the valuesX0, v0 (previous approximation) of the
vector X and parameterv are known, after linearization
within a neighborhood ofX0, v0 the boundary-value prob-
lem for the functionsX̃(ξ) = X(1 − ξ) can be written in
the following form

dX̃

dξ
= A(X̃0, v0)X̃ + f (X̃0, v0) + g(X̃0, v0) (v − v0),

(A.1)

x̃N (1) = �P, X̃(0) = X0,

where

A(X̃0, v0) = −FX(X̃0, v0),

f (X̃0, v0) = FX(X̃0, v0)X̃0 − F(X̃0, v0),

g(X̃0, v0) = −Fv(X̃
0, v0).

Its solution X̃, v is used as the next approximation ofX
andv. For a proper choice of the initial approximation the

described iteration procedure converges to the solution of
the original nonlinear problem (9)–(11).

The linear boundary-value problem (A.1) is solved nu-
merically by means of the orthogonal factorization method
[22]. Being applied to the problem (A.1) with the parameter
v this algorithm has the following scheme. The interval [0,
1] is divided into several subintervals 0= ξ0 < ξ1 < · · · <
ξl = 1 by a proper way. On each subinterval the solution is
found as the following linear combination:

X̃(ξ) = UN(ξ) + (v − v0)UN+1(ξ) +
N−1∑
j=1

βs
jUj (ξ),

ξs ≤ ξ < ξs+1, (A.2)

where the coefficientsβs
j andγ = v − v0 are determined

from conditions at the pointξ = 1, and the vector func-
tions Uj (ξ ) for j = 1, . . . , N + 1 are determined at the
“straight-run stage” consecutively on each subinterval [ξ s ,
ξ s+1] for s = 0, . . . , l − 1 as solutions of the following
initial-value problems, respectively:

dUj

dξ
= A(X̃0, v0)Uj (ξ), Uj (ξs) = Zj (ξs),

j = 1, . . . , N − 1,

dUN

dξ
= A(X̃0, v0)UN(ξ) + f (X̃0, v0),

UN(ξs) = ZN(ξs),

dUN+1

dξ
= A(X̃0, v0)UN+1(ξ) + g(X̃0, v0),

UN+1(ξs) = ZN+1(ξs).

The corresponding initial conditions for these problems are
determined as follows.

For s = 0 the initial conditions are chosen atξ = 0:

Z1(0) = e1, . . . , ZN−1(0) = eN−1,

ZN(0) = �P · eN, ZN+1(0) = 0,

whereej is the N-dimensional vector withjth component
equals 1 and other components equal to 0. Thus the vectors
{Zj (0)}N−1

j=1 form an orthonormal basis in the subspace sat-
isfied to the uniform condition at the pointξ = 0, while the
vectorZN (0) is orthogonal to eachZj (0) for j = 1, . . . , N−
1, and satisfies the nonuniform condition atξ = 0. Thus
we have a complete set of initial conditions. Now, we can
integrate the above system fromξ0 = 0 to ξ = ξ1 and
obtain the values{Uj(ξ1)}N+1

j=1 at the end-point of the first
subinterval.

At the pointξ s for s = 1, . . . , l the vectors{Zj (ξs)}N−1
j=1

are defined from the system{Uj(ξs)}N−1
j=1 by the orthogonal-

ization by use the reflection method, thus the initial condi-
tions atξ s are an orthonormal system.. The vectorsZN (ξ s)
and ZN+1(ξ s) are obtained as projections ofUN (ξ s) and
UN+1(ξ s) on the orthogonal supplement to the linear span
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of {Uj(ξs)}N−1
j=1 . We can write this transformation in a ma-

trix form:

[U1(ξs), . . . , UN+1(ξs)] = [Z1(ξs), . . . , ZN+1(ξs)]

×




Rs rsN rsN+1

0 1 0

0 0 1


 ,

where Rs is a square upper-triangular matrix, and vector
rsN+i for i = 0 or 1 consists of the resolution coefficients of

UN+i(ξ s) by the basis{Zj (ξs)}N−1
j=1 .

Further, substituting expression (A2) to the conditions at
ξ = 0 we obtain the parameter valuev = v0 + γ and
vectorβl = (βl

1, . . . , β
l
N−1)

T by solving the following linear
algebraic system:

N−1∑
j=1

βl
jZj (1) + γZN+1(1) = X0 − ZN(1).

Finally at the “backward stage” using conditions of the so-
lution continuity at the pointsξ s we consecutively obtain
vectorsβ l = (βl

1, . . . , β
l
N−1)

T for s = l−1, . . . ,0 from the
relationship

Rs+1β
s = βs+1 − rs+1

N − γ rs+1
N+1.

Thus, we can build the solution of the linearized boundary-
value problem (A.1) in the form (A.2) in each
subinterval.

The algorithm described allows avoiding the effect of
basis “squashing”, i.e. situations when during integration
of initial-value problems from the orthogonal initial condi-
tions some of the angles between the vectors{Uj(ξs)}Nj=1
vanish and the solution of the linearized boundary-value
problem (A.1) cannot be computed as a linear combina-
tion of these vectors. The partition of integration interval
and the vectors orthogonalization at the end-point of each
subinterval provide more accurate construction of the lin-
earized boundary-value problem (A.1) solution over the
whole interval.

A general computer code for these procedures has been
developed.
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