Chemical
Engineering
Journal

www.elsevier.com/locate/cej

Chemical Engineering Journal 91 (2003) 159-166

Parametric sensitivity of methanol oxidation process as solution of
boundary-value problem with an unknown parameter

Natalia A. Chumakovg Andrew |. Madyarov

Boreskov Institute of Catalysis, Pr. Akad. Lavrentieva 5, Novosibirsk 630090, Russia

Abstract

A new approach to parametric sensitivity studies of a catalytic fixed-bed operation is presented. This approach is based on the sensitivity
functions of technological characteristics with respect to small variations of control parameters under the condition that the pressure drop
over the catalyst bed is fixed. The problem of parametric sensitivity of the methanol oxidation process is formulated as an example serving
to illustrate the computational technique discussed in the paper. The mathematical model can be written as a boundary-value problem for
ordinary differential equations with the linear gas velocity as an unknown parameter. Our approach provides the possibility of estimating
the influence of space-nonuniformities on the technological process characteristics in a real fixed-bed reactor using a relatively simple
one-dimensional model.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction The present study concerns a new approach to analyze
a steady-state operation of the catalytic fixed-bed and to
The behavior of chemical reactors depends on variationsdetermine its parametric sensitivity with respect to small
in the inlet conditions, as well as in other physical and chem- variations of the main process parameters (inlet conditions,
ical parameters of the system. Operation of a large-scalecatalyst activity, particulate bed structure, e{€:}13] We
catalytic fixed-bed reactor may be complicated by high para- consider one-dimensional mathematical model under condi-
metric sensitivity with respect to a small change of the pro- tion that pressure drop over the bed is a priori adjusted but
cess parameters. The general idea can be conveyed with anot the gas flow velocity as it used to be done traditionally.
example of “wrong way behaviof1]. Attempts to estimate  As a result, analyzing the one-dimensional model we would
the regions of steady-state multiplicity or stable operation, be able to perform information about the influence of spa-
and to determine parametric sensitivity using conventional tially distributed nonuniformities on the process operation
technique under the condition of given linear velocity of the parameters.
gas flow[2,3] may provide essential errors especially for Let us consider some separate cylindrical regions dif-
high-exothermic processes. Multidimensional mathematical fering for example, by porosity and located in the same
description accounting for the aerodynamics of the reacting adiabatic bed of a rather large diameter. Since the pressure
gas flow inside a particulate bed as well as the distribution of is practically uniform over the cross-section both before
physical and chemical properties in the system “catalyst— and after the catalyst bed, the pressure drop (or hydraulic
reactive flow” may hardly be applied for every-day engineer- resistance) is the same over each region. At the same time,
ing purpose because the choice of an adequate model for dghe local filtering velocities (or gas consumption) in individ-
nonlinear chemical process and its parameters is rather comual cylindrical regions may be different under real process
plicated[2-5]. Therefore, the parametric sensitivity analysis conditions depending on the bed structure, temperature,
for processes occurring in the catalytic fixed-bed reactors etc. Therefore, the one-dimensional models which are tra-
still attracts attention of researchers and enginf®s8]. ditionally used for description of the processes occurring in
the catalyst beds and based on the heat and mass balances
at the a priori given gas filtering velocity, allow determine
mpondmg author. Tels 7-3832-34-12-78: only some averaged process parameters '_that some_times
fax: +7-3832-34-30-56. may give inaccurate conclusions about permitted variations
E-mail addresschum@catalysis.nsk.su (N.A. Chumakova). of the control parameters. The assumption of fixed pressure
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drop over the catalyst fixed-bed helps to estimate the pro-

cess parameters, which can be realized in separate cylin—

drical regions with different inlet or inner bed conditions
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W1 — Wa, fa= Wi+ W, fa= Q1W1+ Q2W2 and fs =
0.5(W1+ Wo); W; = (1—¢)W3; (j =1, 2);¢ is the bed
porosity, W31, W32 are the reaction rates of methanol and

existed in the same adiabatic bed. Hence, we can observdormaldehyde oxidation stages referred to the catalyst vol-

the local responds to the perturbation of any control param-

ume unit[20], Q1 and Q2 are the heats of stagdsis the

eter. Such conclusions are of course approximate, becaus@xial coordinate along the bed,<0! < L.
the one-dimensional model does not describe the detailed Using balances which are valid for given form of the

aerodynamics in particulate bed even if takes into account

the heat and mass transfer through the outer surface of a

separate cylindrical region in concern. Nevertheless, our

approach focuses on the sources of potential danger for hot*4 = ¥40 + (@1 + Q2)(x10 — x1) + Q2(x20 — x2),

spots to occur in the course of highly exothermic reactions,
and allows us more accurate estimating the maximum value
for the permitted nonuniformities in the catalytic fixed-bed.
Note that earlier studies for the hydrodynamic problems
[14,15], plug flow catalytic reactofl6], and polymerization
reactors[17] had shown that there are parameter regions
in the parameter space where different flow regimes corre-

spond to the same pressure drop in the considered system

while the liquid phase properties, the viscosity in particular,

are strongly dependent on the reaction mixture temperature

and composition. This phenomenon is knowrteesmome-
chanicalor thermoflow multiplicity At the same time, for a
catalytic system “gas—solid” this problem seemed to be of

not high significance, and as a rule the momentum balance

is not considered in mathematical modgsl8].
In this work we demonstrate how the effect of the inlet
conditions or local structure nonuniformities over the bed

cross-section on the temperature distribution at a steady—statTJ
a

operation can be estimated by means of the one-dimension
mathematical model consideration. The sensitivity functions
of technological operation characteristics with respect to
different control parameters are constructed and the com-
parative sensitivity analysis of solutions of the model with
fixed pressure drop over the bed and the conventional plug
flow model is carried out. We have considered an adiabatic
fixed-bed and a large-scale unit with four adiabatic catalyst
beds and heat exchangers between them.

2. Mathematical model of processesin catalyst fixed-bed

A quasi-homogeneous plug flow model is used to model
the steady-state processes in a catalyst fixed-bed reacto
Following [19], we consider the one-dimensional model
of methanol to formaldehyde oxidation in the adiabatic
fixed-bed of oxide-catalyst:
W& F(x), x(0)=x°, (1)

d
wherev is the linear gas flow velocity (calculated at normal
conditions), the vectox = (x1, x2, x3, x4, x5) consists of
the volume concentrations of methang{)( formaldehyde
(x2), water &3) and oxygenxs) (mol/m®) and the tempera-
ture (ka) (K), x = (x10, x20, X30, X40, X50) iS the inlet con-
ditions vector,F = (f1, f2, f3, fa, f5), f1 = —Wa, f2 =

r.

source functionF (x)

X3 = x30 + 2(x10 — X1) + X20 — X2,
(2

X5 = x50 — (x10 — x1) — 0.5(x20 — x2),

we come from the system (1) to a reduced system of only
two equations fox; andxo.

Now let us consider the pressure drop over the nonisother-
mal granular bed. At a given structure of the particulate bed
the increase @ in the pressure drop over the lengthiside-
termined by the local flow velocity through the bed, gas
aensity,o and dynamic viscosity.. Regarding the accuracy
of practical importance for a wide range of parameters we
may use the Ergun equati¢dl]:

dp
d
whereP(l) denotes the pressure drop over the lethdgtience
P(0) = 0), the constantgg and 8o depend on the prop-
erties of the packing and the porosityin particular. If a
chemical reaction evolving or consuming heat occurs in the
ed thenu, p, andv in the contact zone will change along
according to the temperature distribution. We may neglect
the effect of the gas composition on the thermal and phys-
ical flow properties, assuming that mixture in concern is
low-concentrated that is typical for most catalytic processes.
Let the reaction occur without volume change, and pressure
drop over the bed be much less than the average pressure in
the reactor. Then, according to the continuum equation and

in assumption of the ideal gas, it follows that:

Tp
P =po—,
X4

= aoud + Popi?, ©)

x4

V=v—.
To

4)
Moreover,u = uop(x4) Wherepo, o, andv are the density,
dynamic viscosity and linear velocity of the gas mixture at
STP (273K and 0.1 MPa).

Integrating theEq. (3) andusing the ratios (4) we get the
pressure drop over the nonisothermal particulate bed of the

lengthL
L 2
AP =/ Ap <v ) di,
; (Ret?)

where AP = P(L) — P(0), A is a coefficient determined
by the bed structure and by the catalyst particle size and
shapeRe= Rg, ¢, x4) is the Reynolds numbes, and 8
are constants.

Therefore, if we introduce a dimensionless axial coordi-
nateé = I/L, 0 < £ < 1, and take into consideration the

x4

o —l—ﬂ
To

Re ®)
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balances (2), the mathematical model for the process in the
catalyst bed can be rewritten in the following form:

d L
- = A-ewa,
£ v
dxo L
W& ;(1 — &) (W31 — Wap), (6)
dP—AL x4 2(a+ﬂ>
aE P\’ ) \Re™F)
with the conditions at the inlet
x1(0) = x10, x2(0) = x20, P(0) =0, (7)
and given pressure drop over the bed
P(1) = AP. (8)

The model (6)—(8) contains the parameteto be found.
Physically, it means that the local gas velocity is determined

by the local conditions and tunes after the general pressureZ =

drop over the catalyst bed. From the formal point of view,
now the mathematical model is the boundary-value prob-
lem, and moreover contains one unknown parameter. This
is its principal difference from the conventional approach
as the initial-value problem (6) and (7). Note that if the
thermal-physical parametepsand . of the mixture do not
change along the bed, then the gas flow velotigjso does

not change, and the relationship (5) betweeand AP is

a quadratic equation. Moreover, both models have the same

unigue solution under real conditions for the methanol to
formaldehyde oxidation process: regimes are completely de-
termined by the inlet conditions® and by the gas supply

for the model (6) and (7) in traditional approach or by the
pressure drop\P for the model (6)—(8).

In order to compare the parametric sensitivity for solu-
tions of two models in a correct way, it is necessary to take
AP-value in the boundary-value problem (6)—(8) as one cor-
responded to the gas flow velocity in the initial-value prob-
lem (6) and (7). That means the identity of the technological
modes in both reactor models considered.

Note, that in case of a more complex reaction scheme
we obtain a similar one-dimensional mathematical model
consisted oN equations:
dx

E = F(x,v,0),

where the last equation defines the pressure drop again. Fo

X=(x1,...,xn),

(9)
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step of which the arising linearized boundary-value prob-
lem with a parameter was solved numerically by means of
the orthogonal factorization methdd?2]. That allows the
solution to be found more accurate in regions of high gra-
dients. Some further details of the numerical technique are
presented in thé&ppendix A

3. Parametric sensitivity functions

First results on the parametric sensitivity of steady-state
processes in catalytic fixed-bed reactors under condition of
the given pressure drop over the bed were presented in
[10-13] Now to analyze the sensitivity of the solutiof
andv of the problem (9)-(11) with respect to a certain pa-
rameterd, we introduce parametric sensitivity functions:

X v
36" N
Differentiation of the problem (9)—(11) with respect do

gives the corresponding linear boundary-value problem for
the vector-functiorZ and parameteu:

u

dz

E:FX(X’Uve)'Z+F9(X7U59)+FU(X1 U,9)~u,(12)
9o _a(aP)

Z(0) = 29 N 59 (13)

where X andv represent the solution of the original prob-
lem. We solve this problem numerically using the orthogo-
nal factorization method as well (ség@pendix A).

In order to make a quantitative comparison of the sensi-
tivities of different x;-components with respect to various
parameters we consider some dimensionless values like in
[7]. Thus, we introduce the normalized sensitivity function
of the functionx; with respect to a parametér

3)(,' o*
Sx;,0) = —— 14
(x;,0) 30 x,‘* ( )
where x and 6* stand for some basic values of the

x;-function and parameté.

4, Results
r

boundary conditions witiN conditions at the inlet and one
condition at the outlet of the catalyst fixed-bed:

X(0) = Xo(0), (10)

v (1) = AP®). (11)

where,f denotes a selected parameter of the model, sensi-

tivity analysis with respect to which is of practical interest.
To solve the boundary-value problem (9)—(11) with the

parameterv we used Newton’s method, at each iteration

along the reactor with four catalyst beds and heat removal
between them are shown. The porosity is 0.45 and gas flow
velocity isvg = 1.112m/s in each bed. The beds lengths
were chosen to provide the methanol conversion to be about
25% in each bed. It allows achieving an almost complete
methanol conversion avoiding high temperatyfek 23]
Process robustness is a key operation factor, which is de-
termined first of all by the parametric sensitivity of the oper-
ation mode with respect to the control parameters variations.
Now let us consider the process in the first catalyst bed. The
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Fig. 1. Profiles of temperatung, (solid lines) and methanol conversion (@) v, m/s

x (dash lines) in four adiabatic catalyst beds. The inlet conditions are
x10 = 2.93, x20 = 0, x30 = 1.34 andxso = 4.014 mol/n? for the first
bed, the inlet temperature isjp = 503K for the first and second beds
and x40 = 513K for the third and fourth beds.

outlet temperature{"' = x4(1) is the more important pa-
rameter of the state in our cagég. 2ashows how the inlet
gas mixture temperature affeat$"* at various bed packing.
We see that in the bed with the porosity= 0.4, at the gas
flow velocity v = vg and temperatureso = 503 K, the out-

let temperature respond t@g change by 1K equals 12K,
and methanol conversion changes by 2.9%. If the packing
is more rough and = 0.45, then the parametric sensitiv-
ity of xEUt with respect taxyg is 7-9 K/K at the same other
conditions.

In case we fix the pressure drop over the ba®, any
perturbation of inlet conditions will affect the local gas flow
velocity (seeFig. 2. Since AP(v) is a growing function
while xf{”t(v) is a decreasing function, then the parametric 0 L O S S S B B I B S
sensitivity determined at some definitdPq is higher than 0.8 1.0 1.2 1.4 1.6 18 20
that calculated at constant velocity. Certainly, one should (b) v, m/s
make comparison at the equal valud®y = AP (vg). In
fact, forv = vg, x% = (2.93,0, 1.34, 503 4.014), ands = Fig. 2. Temperature at the adiabatic catalyst bed outlet (a) and pressure
0.45 we obtaimA Py = 1.813 kPa. The parametric sensitivity ~drop over the bed (b) versus gas flow velocity at various porosities:
with respect taxg perturbation is by 20-25% higher than ¢ = O'A.'S (solid Iin_es), 0.4 (dash Iine.s). Inlet conditionsig = 2.93;
that determined by conventional procedure at the given gas'2 = 0 20 = 1:34 x50 = 4014 mol/; and o = 503 (1), 509K (2)
velocity v = vo.

Our model (6)—(8) can be used to study the effect of oxidized. At largere, on the contrary, the gas flow velocity
nonuniform structure (the local porosity fluctuations) on the v is higher, and the temperature is lower. Curves shown in
operation mode. Assume that there are cylindrical domains Fig. 3 correspond to the gas flow velocities 1.112 m/s (1),
in the bed whose structures are different. With the cylindri- 0.814m/s (2) and 0.541 m/s (3), respectively. Thus curve 1
cal particles of equal height and diameter (that is valid for reveal small gradients along the bed, temperature does not
the process in concern) the typical bed porosity is 0.35-0.45exceed 600K, and the formaldehyde generation rate dom-
[21]. At smallere the linear gas flow velocity is lower. So, inates over its oxidation rate. The temperature profile 2 has
we deal with a longer contact time, higher temperature, and a larger gradient. At last, at= 0.35 the mixture filtration
more intensive methanol oxidation going to higher con- through the bed is more slow, and process parameters con-
versions, though formaldehyde produced will be partially tinue to grow worse (curve 3): almost complete methanol
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Normalized sensitivity of X410 X4
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Normalized sensitivity of X410 x4

Fig. 3. Temperature and concentration profiles in the adiabatic catalyst
bed atx®=(2.93, 0, 1.34, 503, 4.014)AP = 1.813kPa,s = 0.45 (1), 0.3 -
0.4 (2), 0.35 (3). Dotsxs, dashesxy, solid line: x4.

conversion occurs & = 0.7, and the process selectivity 7N
decreases. If we fix the gas flow velocityand consider the 0.2+ / h
model (6) and (7), then at each velocity corresponding to ik
curves 1-3 irFig. 3 the same fluctuations af lead to the 7 /i

far less changes in temperature and selectivity. /

Note that we suppose here that the domains of various 0.1 /
porosities do not interact with each other. Therefore, the /
obtained regimes may realize in the central parts of rel- .
atively large domains, being each uniform by structure.
However, the mathematical modeling confirms that under 0.0 : : : | : : : |
consideration of the regarding radial heat and mass transfer 00 04 08 12 16
on the boundaries of these domains, the temperature differ-
ence between them remains quite large though it decreases () ¢, m
[13]. This conclusion is also valid for the model describing  kig_ 4. Normalized sensitivity functions of the temperataravith respect
transfer processes at the fixed gas flow velocity. to the inlet temperature (a) and the inlet methanol concentration (b) at

If we choose the inlet temperatuxgg or methanol con- the fixed pressure drop (solid lines) and at the given gas flow velocity
centratiorx;g as a selected paramesenhe normalized sen- (dash lines) on each catalyst bed. Conditio_ns corresporfdgol The
sitivity functions of the temperatupe, with respect to these :‘éf;zgﬁ]zr"‘f‘;ucr;fsa”d methanol concentrations at each bed were used as
parameters do not much distinguish for the model (6)—(8) '

(solid lines inFig. 4a and pand (6) and (7) (dash lines).

In this case, the difference in sensitivity is 5-10%. Note

also that the sensitivity with respect to the inlet temperature compatible with practical surveys. Thus, at the given gas
variations decreases from the first to the fourth bed, but the velocity vg = 1.112 m/s and = 0.45, the normalized sen-
sensitivity with respect to the inlet methanol concentration sitivity function value equals-0.415 at the first bed outlet,
increases in general. that corresponds to the outlet temperature sensitivity to the

Another situation is observed with the temperature sen- porosity as—463.5K. Then the porosity decrease from
sitivity with respect to the structure nonuniformities (see 0.45 to 0.4 leads to the outlet temperature increase by 23K
Fig. 5. The sensitivity functions appear to be much big- and allowed bed structure nonuniformity may be as high as
ger in magnitude for the model (6)—(8), what is more 0.15. If we impose condition (8), then at the same change of
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Fig. 5. Normalized sensitivity functions of the temperatarevith respect ) . " .
to the local porosity at fixed pressure drop over each catalyst bed (solid Fig. 6. Normalized sensitivity functions of methanol (1) and formaldehyde

lines) and at given gas flow velocity (dash lines). The inlet temperatures (2) concentration in the first bed with respect to the local porosity (solid

at each bed and the porosity value were used as normalizing factors.  Ines) and pressure drop (dash lines) o= 0.4 and AP = 1.813kPa.
The inlet conditions correspond féig. 1 The inlet methanol and outlet

formaldehyde concentrations, the pressure drop over the bed and the
porosity values were used as normalizing factors.

‘m

¢ the outlet temperature increase is by several folds larger.
In this case, for the valua P = 1.813kPa (the pressure
drop over the catalyst bed a§ = 1.112 m/s and: = 0.45)
the allowed porosity variations can be not more than 0.04. 800 —
That means that the catalyst packing should be more uni-
form than the initial-value problem (6) and (7) estimates. 1
Fig. 6 shows the sensitivity functions of methanol and
formaldehyde concentrations with respect to small variations
of the porosity (solid lines) and pressure drop (dash lines)
in the first catalyst bed. We can see that the sensitivity to
AP is not high if compared with sensitivity te. 600 —
Note that the sensitivity functions estimate the reactor be-
havior just for the small fluctuations of control parameters .
considered, i.e. specify the local sensitivity in the paramet-
ric space. For appreciable parameter variations the reactor 500 —— 71T T T
respond can be much different from the predicted by means 0.35 040 ¢ 045 0.50
of sensitivity functions (seEig. 7). The tangents to the out-
let temperature versus porosity curves are determined by the;(iijn(71érThveaﬁ:tleiot;ggezggur(g) 0;‘;‘9 f"f;fgﬁp\;er(ssﬁidtﬁ?nepsf;“;sri]g’ in
_SenSItIVIty fun_Ctlons’ and the_y are close to each other only initial-val);e problpem (6) and (7) at = 1.112m/s (dash lines). Straight
in a small region near the point of contact. At 0.05 changes e are defined with sensitivity functions at= 0.45.
in porosity, the sensitivity function in the model (6)—(8) can
underestimate the temperature respond for over 100 K.
Experience of catalytic fixed-bed operation shows that 5. Conclusion
some significant nonuniformities of the outlet temperature,
so called “hot spots”, can appear in the large diameter For efficient and accurate theoretical analysis of the pro-
adiabatic beds. This phenomenon might be caused by thecesses in catalytic fixed-bed reactors, a new approach has
nonuniform bed structure, in particular. In this case it is been described. In the approach the sensitivity functions
reasonable to take into account that different regions of the technique has been adopted for treatment of possible nonuni-
particulate fixed-bed work at the same pressure drop while form temperature spots appearing in real catalyst beds due
the local gas flow velocities can be different. to fluctuations of the inlet conditions or bed structure pa-

x4(1), K
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rameters.It has been demonstrated that the permitted padescribed iteration procedure converges to the solution of
rameter variations, so-called practical operation stability of the original nonlinear problem (9)—(11).
steady-state regimes, can be more precise determined by a The linear boundary-value problem (A.1) is solved nu-
relatively simple one-dimensional mathematical model un- merically by means of the orthogonal factorization method
der condition that the pressure drop over the bed is given[22]. Being applied to the problem (A.1) with the parameter
while the local gas flow velocity is to be found. The approach v this algorithm has the following scheme. The interval [O,
has been successfully applied to the sensitivity analysis of 1] is divided into several subintervals9&y < &1 < --- <
methanol oxidation process on oxide catalyst. & = 1 by a proper way. On each subinterval the solution is
We believe it will be possible to use this technique for found as the following linear combination:
various exothermic processes performed in the catalytic
fixed-bed reactors. The numerical algorithm applied to solve _ 0 s
the boundary-value problem for the system of ordinary dif- XE) =UnE) + @ —v)Un4(6) + Z’Bj U;j @),
ferential equations with an unknown parameter appears to j=1
be an important tool to determine the parameters region of&s < & < &1, (A.2)
the efficient and safe catalytic fixed-bed reactors operation.

N-1

where the coefficientﬁj andy = v — v? are determined
from conditions at the poin§ = 1, and the vector func-
tions U;(¢) for j = 1,..., N 4+ 1 are determined at the
“straight-run stage” consecutively on each subinterga| [

, &s11] for s = 0,...,1 — 1 as solutions of the following
We are grateful to the European Community Pro- jitial-value problems, respectively:

gram Copernicus-2 for partly funding this work under
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Appendix A q
Un 50 0 50 0
_ZA(va)U()+ (va)v
Here we shall describe the numerical technique for solv- d& vE+ S
ing the nonlinear boundary-value problem (9)—(11) with the Un(s) = Zn (),

unknown parameter in detail. This technique is based on
the construction of a sequence of approximations of a solu-
tion of the problem (9)—(11). We apply the Newton method
and the orthogonal factorization method for solving the lin- Un+1(&5) = Zny1(6s).
ear boundary-value problems in the course of iteratjid@k

Note that the orthogonal factorization method was used also
for solving the linear boundary-value problem (12) and (13)
with the parameteu for sensitivity functions.

When the value¥?, v° (previous approximation) of the 7100) = 1
vector X and parametew are known, after linearization ’
within a neighborhood oK°, v° the boundary-value prob- 24~ (0) = AP ey, Zn4+1(0) =0,
lem for the functionsX (¢) = X (1 — &) can be written in
the following form

Unia 5 -
2 = AKX, 0O Un1(6) + (X0, 00,

The corresponding initial conditions for these problems are
determined as follows.
For s = 0 the initial conditions are chosen at= 0:

covy Zy-1(0) = en_1,

wheree; is the N-dimensional vector withth component
equals 1 and other components equal to 0. Thus the vectors
dx } } } . {Z; (O)}j.\’:‘l1 form an orthonormal basis in the subspace sat-
= = AX% 09X + £(X° 00 + g(X°, 0% (v =0, isfied to the uniform condition at the poiat= 0, while the

dé vectorZy(0) is orthogonal to each;(O)for j = 1,..., N —
(A1) 1, and satisfies the nonuniform conditiong&t= 0. Thus
we have a complete set of initial conditions. Now, we can

iv(l) = AP, X(0) = Xo, _
wd © 0 integrate the above system frofg = 0 to &§ = &; and

where obtain the valuegU (51)}§Yj11 at the end-point of the first
=0 0 =0 0 subinterval.

A(XE,v7) = —Fx (X7, v7), At the pointé, fors = 1,...,1 the vectors{Zj(*;‘S)}?’:_ll

(X000 = Fx (X%, v9) X0 — F(X0,00), are defined from the systefty; (gs)}?’:‘ll by the orthogonal-

(X9, 00 = —F,(X9,9). ization by use the reflection method, thus the initial condi-

5 tions at&; are an orthonormal systenThe vector<Zy (&)
Its solution X, v is used as the next approximation Xf and Zy +1(&5) are obtained as projections bfy (&) and
andv. For a proper choice of the initial approximation the Uy 11(§5) on the orthogonal supplement to the linear span
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of {U; (ss)}jf’:_ll. We can write this transformation in a ma-
trix form:

[U1(&), ..., Un+19)] = [Z1(&), . .., Zn+1(8)]

Ry ry rypa
x| O 1 0 ,
0 0 1

whereR; is a square upper-triangular matrix, and vector
ry4; fori =0 or 1 consists of the resolution coefficients of
U +i(£s) by the basiqZ; ()}

Further, substituting expression (A2) to the conditions at
£ = 0 we obtain the parameter value= v° + y and
vectorp! = (BL, ..., By _,)T by solving the following linear
algebraic system:

N-1
D BZi(D) +yZyiaD) = Xo— Zy (D).
j=1

Finally at the “backward stage” using conditions of the so-
lution continuity at the pointg; we consecutively obtain

vectorsp’ = (8L, ..., B4 T fors =1—1,...,0fromthe
relationship
Reaft = pHt— it —yrifh

Thus, we can build the solution of the linearized boundary-
value problem (A.1) in the form (A.2) in each
subinterval.

The algorithm described allows avoiding the effect of
basis “squashing”, i.e. situations when during integration
of initial-value problems from the orthogonal initial condi-
tions some of the angles between the vec{dir§(és)}§.":1
vanish and the solution of the linearized boundary-value

problem (A.1) cannot be computed as a linear combina-

tion of these vectors. The partition of integration interval

and the vectors orthogonalization at the end-point of each

subinterval provide more accurate construction of the lin-
earized boundary-value problem (A.1) solution over the
whole interval.

A general computer code for these procedures has been

developed.
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